首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6223篇
  免费   1289篇
  国内免费   532篇
化学   2942篇
晶体学   337篇
力学   523篇
综合类   47篇
数学   462篇
物理学   3733篇
  2024年   9篇
  2023年   50篇
  2022年   147篇
  2021年   194篇
  2020年   252篇
  2019年   207篇
  2018年   170篇
  2017年   200篇
  2016年   305篇
  2015年   261篇
  2014年   314篇
  2013年   490篇
  2012年   365篇
  2011年   483篇
  2010年   400篇
  2009年   397篇
  2008年   414篇
  2007年   456篇
  2006年   406篇
  2005年   344篇
  2004年   300篇
  2003年   276篇
  2002年   209篇
  2001年   187篇
  2000年   131篇
  1999年   106篇
  1998年   121篇
  1997年   86篇
  1996年   99篇
  1995年   80篇
  1994年   86篇
  1993年   73篇
  1992年   69篇
  1991年   44篇
  1990年   51篇
  1989年   42篇
  1988年   34篇
  1987年   32篇
  1986年   21篇
  1985年   28篇
  1984年   15篇
  1982年   13篇
  1981年   7篇
  1980年   10篇
  1979年   16篇
  1978年   9篇
  1974年   4篇
  1973年   8篇
  1971年   4篇
  1970年   4篇
排序方式: 共有8044条查询结果,搜索用时 109 毫秒
71.
Controlling the morphology and composition of one-dimensional (1D) and two-dimensional (2D) assemblies of matter is essential to design and create nanostructures with exceptional material properties, for applications ranging from nanoelectronics to nanomedicine. Within this latter, a great interest is placed on assembling magnetoplasmonic nanostructures to enable multimodal biosensing and bioimaging for early diagnosis and prognosis of diseases. To date, the synthesis of such complex nanostructures is mostly relying on wet chemistry and templates. Herein, we employed a templateless physical method to generate FeAg-based anisotropic nanostructures, using a modified cluster source. Under tuned experimental conditions, we demonstrated the successful magnetic-assisted assembly of Fe nanoclusters (Fe NCs), to form stable and permanent branched Fe nanorods (Fe NRs), core@shell Fe@Ag-NRs, Fe nanosheets (Fe NSs), and Fe/Ag-NSs. This assembly is driven by the need to reduce their magnetic interaction energy on one hand and their overall surface energy on the other hand. When NCs and NRs are magnetically brought into intimate contact, they undergo a coalescence process, through the interfacial diffusion of the surface atoms, resulting in the formation of 1D and 2D nanostructures. For Fe@Ag NRs, the advantage conferred by the Ag shell is to protect Fe NRs from oxidation and prevent them from aggregation at the same time. The observed contrast reversal in Scanning Electron Microscopy (SEM) images of Fe NRs and Fe NSs is discussed.  相似文献   
72.
Plastoquinone and ubiquinone play essential roles in the electron transport chains of chloroplasts and mitochondria by coupling electron transport to the transfer of protons across membranes. The energy of the resulting proton gradient is used to synthesize adenosine triphosphate (ATP), the energy currency of all life. How did quinones first become involved in this process? We have detected several quinone compounds in carbonaceous meteorites that can transport protons in a liposome model system. It is possible that such compounds were available to transport protons in primitive versions of electron transport in early life.  相似文献   
73.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
74.
Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.  相似文献   
75.
The heat capacity of levoglucosan was measured over the temperature range (5 to 370) K by adiabatic calorimetry. The temperatures and enthalpies of a solid-phase transition and fusion for the compound were found by DSC. The obtained results allowed us to calculate thermodynamic properties of crystalline levoglucosan in the temperature range (0 to 384) K. The enthalpy of sublimation for the low-temperature crystal phase was found from the temperature-dependent saturated vapor pressures determined by the Knudsen effusion method. The thermodynamic properties of gaseous levoglucosan were calculated by methods of statistical thermodynamics using the molecular parameters from quantum chemical calculations. The enthalpy of formation of the crystalline compound was found from the experiments in a combustion calorimeter. The gas-phase enthalpy of formation was also obtained at the G4 level of theory. The thermodynamic analysis of equilibria of levoglucosan formation from cellulose, starch, and glucose was conducted.  相似文献   
76.
Core‐shell carbon‐coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high‐power lithium‐ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon‐coated LiFePO4‐rGO (LFP/C‐rGO) hybrids were ascribed to three factors: 1) In‐situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4, 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C‐rGO hybrids with LFP/C‐rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li+ ion and electron transport for high power applications.  相似文献   
77.
Heterojunctions of g‐C3N4/Al2O3 (g‐C3N4=graphitic carbon nitride) are constructed by an in situ one‐pot hydrothermal route based on the development of photoactive γ‐Al2O3 semiconductor with a mesoporous structure and a high surface area (188 m2g?1) acting as electron acceptor. A structure modification function of g‐C3N4 for Al2O3 in the hydrothermal process is found, which can be attributed to the coordination between unoccupied orbitals of the Al ions and lone‐pair electrons of the N atoms. The as‐synthesized heterojunctions exhibit much higher photocatalytic activity than pure g‐C3N4. The hydrogen generation rate and the reaction rate constant for the degradation of methyl orange over 50 % g‐C3N4/Al2O3 under visible‐light irradiation (λ>420 nm) are 2.5 and 7.3 times, respectively, higher than those over pristine g‐C3N4. The enhanced activity of the heterojunctions is attributed to their large specific surface areas, their close contact, and the high interfacial areas between the components as well as their excellent adsorption performance, and efficient charge transfer ability.  相似文献   
78.
物质的蒸气压是化学、化工、冶金、医药等领域的重要基础数据。测量饱和蒸气压是大学物理化学实验教学中的一个基础实验,测量方法主要有静态法和动态法,但两种方法的比较尚未见报道。本文通过比较,得出了两种方法的优缺点以及注意事项。  相似文献   
79.
以纯液体蒸气压和亨利系数为出发点,讨论了二组分气液相图存在共沸点的充分条件。结合纯液体蒸气压和亨利系数的物理意义,对共沸点存在的条件进行了说明。  相似文献   
80.
The aim of this paper was to test the thermal and environmental stability of poly(4-ethynyl-p-xylyleneco-p-xylylene) thin films prepared by chemical vapor deposition(CVD) and to optimize the reaction conditions of the polymer.Fourier transformed infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and fluorescence microscopy were employed to investigate the stability of the reactive polymer coatings in various environmental conditions.Chemical reactivity of the thin films were then tested by Huisgen 1,3-dipolar cycloaddition reaction(‘‘click' reaction).The alkyne functional groups on poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films were found to be stable under ambient storage conditions and thermally stable up to 100 8C when annealed at 0.08 Torr in argon.We also optimized the click reaction conditions of azide-functionalized molecules with poly(4-ethynyl-p-xylylene-co-p-xylylene).The best reaction result was achieved,when copper concentration was 0.5 mmol/L,sodium ascorbate concentration to copper concentration was 5:1.In contrast,the azide concentration and temperature had no obvious effect on the surface reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号